Image:
ICLR

Two Visual Intelligence papers accepted for prestigious AI conference

New information theories and divergences by Visual Intelligence have been developed and accepted in the prestigious International Conference on Learning Representations (ICLR) 2024. ICLR has an acceptance rate of approximately 30 percent.

Two Visual Intelligence papers accepted for prestigious AI conference

New information theories and divergences by Visual Intelligence have been developed and accepted for the prestigious International Conference on Learning Representations (ICLR) 2024. ICLR has an acceptance rate of approximately 30 percent.

By: Robert Jenssen, Director, Visual Intelligence

Developing new theories to reveal information in deep learning

Modern society is data-driven in the sense that sensors and observations provide measurements. Images are examples of measurement. Key to Visual Intelligence is to reveal and exploit important information from images automatically with deep neural networks to help decision makers. For instance, to reveal information about possible tumors by analysing medical images. In order to do that, it is key to be able to define and quantify information in a mathematical sense and to be able to exploit it.

For instance, it will very often be crucial to be able to quantify in some sense how much information one population of measurements (P) carries about another population of measurements (Q). This is illustrated in a simplified manner in the figure. The difference between P and Q is often called divergence.

P and Q represent different populations of observations. A divergence measure quantify the difference between P and Q. Illustration by Shujian Yu

Introduces a new measure of divergence

The first paper is entitled Cauchy-Schwarz Divergence Information Bottleneck for Regression. The paper’s authors are Shujian Yu, Sigurd Løkse, Robert Jenssen, and Jose Principe.

Professor Jose Principe (University of Florida) and Shuijan Yu (UiT/Free University of Amsterdam) discuss information theory with the idyllic scenery of Tromsø in the background. Photo by Robert Jenssen

In this paper, the aim is to capture as much information as possible about input images while, at the same time, compressing the data representation through a so-called bottleneck. This is highly related to compression, which is crucial to any digital system. The paper develops a new and better way to do this by introducing a new divergence measure.

You may read the paper abstract at the lower portion of this article.

New ways of presenting a population

The second paper is titled MAP IT to Visualize Representations. The paper's author is Robert Jenssen.

In this paper, a ubiquitous challenge in machine learning is tackled. When dealing with data such as images, each observation (image) is often composed of millions of numbers (pixel values). This creates big problems since machine learning systems in general work better when observations are characterized by fewer numbers. It is also very challenging to visualize (“look at”) observations composed of millions of numbers. MAT IT proposes a new way to represent a population such that each observation in the population is composed of only two numbers. This enables plotting of the data set for visualization purposes and helps machine learning systems work better.  

A simplified example is shown below. Small images of handwritten digits are in this case 24 by 24 pixels which means that each image is composed of 576 numbers. MAP IT minimizes the divergence between the set of images with a representation of these images composed only of two numbers. The two numbers represent a dot in a plot. When printing the actual images on top of the dots representing the images, it is clear that the main structure is captured, in the sense that dots corresponding to 4s are separated from dots corresponding to 9s and furthermore separated from dots corresponding to 7s.

The paper abstract can be viewed at the lower portion of this article.

MAP IT is a new way to visualize representations. Illustration provided by Robert Jenssen.

Information about each paper

Cauchy-Schwarz Divergence Information Bottleneck for Regression

By authors Shujian Yu, Sigurd Løkse, Robert Jenssen, Jose Principe.

Open Review link: https://openreview.net/pdf?id=7wY67ZDQTE

Abstract

The information bottleneck (IB) approach is popular to improve the generalization, robustness and explainability of deep neural networks. Essentially, it aims to find a minimum sufficient representation by striking a trade-off between a compression term, which is usually characterized by mutual information I(x; t) where x refers to the input, and a prediction term usually characterized by I (y; t) where y is the desired response. Mutual information is for the IB for the most part expressed in terms of the Kullback-Leibler (KL) divergence, which in the regression case corresponds to prediction based on mean squared error (MSE) loss with Gaussian assumption and compression approximated by variational inference. In this paper, we study the IB principle for the regression problem and develop a new way to parameterize the IB with deep neural networks by exploiting favorable properties of the Cauchy-Schwarz (CS) divergence. By doing so, we move away from MSE-based regression and ease estimation by avoiding variational approximations or distributional assumptions. We investigate the improved generalization ability of our proposed CS-IB and demonstrate strong adversarial robustness guarantees. We demonstrate its superior performance on six real-world regression tasks over other popular deep IB approaches. Additionally, we observe that the solutions discovered by CS-IB always achieve the best trade-off between prediction accuracy and compression ratio in the information plane.

MAP IT to Visualize Representations

By author Robert Jenssen.

Open Review link: https://openreview.net/pdf?id=OKf6JtXtoy

Abstract

MAP IT visualizes representations by taking a fundamentally different approach to dimensionality reduction. MAP IT aligns distributions over discrete marginal probabilities in the input space versus the target space, thus capturing information in wider local regions, as opposed to current methods which align based on pairwise probabilities between states only. The MAP IT theory reveals that alignment based on a projective divergence avoids normalization of weights (to obtain true probabilities) entirely, and further reveals a dual viewpoint via continuous densities and kernel smoothing. MAP IT is shown to produce visualizations which capture class structure better than the current state of the art.

Latest news

Three Visual Intelligence-authored papers accepted for leading AI conference on medical imaging

June 24, 2025

Visual Intelligence will be well represented at MICCAI 2025—one of the leading AI conferences on medical imaging and computer assisted intervention—with three recently accepted research papers.

2025 Norwegian AI Society Symposium: An insightful and collaborative event

June 23, 2025

More than 50 attendees from the Norwegian AI research community gathered in Tromsø, Norway for two days of insightful presentations, interactive technical sessions, and scientific and social interactions.

Minister of Research and Higher Education visits Visual Intelligence hub at Norwegian Computing Center

June 16, 2025

Last week, we wished Aasland—accompanied by Political Advisor Munir Jaber and Senior Adviser Finn-Hugo Markussen—welcome to the Norwegian Computing Center (NR). One of the visit's goals was to showcase ongoing Visual Intelligence projects at NR.

Visual Intelligence represented at EAGE Annual 2025

June 15, 2025

Alba Ordoñez and Anders U. Waldeland presented ongoing work on seismic foundation models and an interactive seismic interpretation engine at EAGE Annual 2025 in Toulouse, France.

Visual Intelligence PhD Fellow Eirik Østmo featured on Abels tårn

June 13, 2025

Østmo was invited to Abels tårn—one of the largest popular science radio shows in Norway—to answer listener-submitted questions related to artificial Intelligence (AI). The live show took place at Blårock Cafe in Tromsø, Norway on June 12th.

New Industrial PhD project with Kongsberg Satellite Services

June 12, 2025

VI industry partner Kongsberg Satellite Services (KSAT) received an Industrial PhD grant from the Research Council of Norway. The project will be closely connected to Visual Intelligence's "Earth observation" innovation area.

Visual Intelligence represented at plankton-themed workshop by The Institute of Marine Research

June 11, 2025

Visual Intelligence Researchers Amund Vedal and Arnt Børre Salberg recently presented ongoing Visual Intelligence research at a plankton-themed workshop organized by the Institute of Marine Research (IMR), Norway

My Research Stay at Visual Intelligence: Teresa Dorszewski

June 5, 2025

Teresa Dorszewski is a PhD Candidate at the Section for Cognitive Systems at the Technical University of Denmark. She visited Visual Intelligence in Tromsø from January to April 2025.

Visual Intelligence represented at the NORA Annual Conference 2025

June 3, 2025

Centre Director Robert Jenssen was invited to give a keynote and participate in a panel discussion on AI as critical national infrastructure at the NORA Annual Conference 2025 in Halden, Norway.

NRK.no: Nekter å svare om umerkede puslespill er KI-generert: – De bør være ærlige

June 2, 2025

Både forskere og statsråd mener kunstig intelligens bør tydelig merkes. Men forlaget som lager puslespillet som ekspertene mener er KI-generert, sier de ikke har noe med hvordan illustratører lager produktene sine (Norwegian news article by NRK)

ScienceNorway: This is how AI can contribute to faster treatment of lung cancer

May 30, 2025

Researchers have developed an artificial intelligence to map specific immune cells in lung cancer tumors. It can lead to less costly examinations and more personalised cancer treatment (English news story on sciencenorway.no).

Now Hiring: 4 PhD Fellows in Deep Learning

May 28, 2025

The Department of Physics and Technology at UiT The Arctic University of Norway is pleased to announce 4 exciting PhD Fellowships within machine learning at SFI Visual Intelligence. Application deadline: June 17th.

VG: Slik kan AI revolusjonere lungekreftbehandling

May 19, 2025

Norsk forskning har utviklet kunstig intelligens som raskt kan analysere lungekreft. Ekspertene forklarer hvordan dette kan bidra til en mer effektiv og persontilpasset behandling (Norwegian news article in vg.no)

Visual Intelligence evaluated by international experts: "The centre operates at an excellent level"

April 29, 2025

After four years of operation, an international AI expert panel was appointed to assess Visual Intelligence's progress and results. The evaluation was characterized by its excellent remarks on the centre's scientific quality and innovation output.

Visual Intelligence at Norsk Radiografforbund's mammography symposium

April 24, 2025

Senior Researcher Fredrik Dahl recently gave a talk about Norsk Regnesentral's work on developing AI algorithms for automatic analysis of image quality and cancer detection at Norsk Radiografforbund's mammography symposium in Oslo.