Marine sciences

Developing models and applications to monitor the marine environment


Ecological studies, involving e.g. classification and statistical counting of species in an ecosystem, has been challenging and time consuming tasks in the marine sciences. Efficient and reliable data-driven methods for automatic analysis of complex marine observation data are needed to ensure sustainable fisheries and harvest. Deep learning has the potential to automate and streamline the steps required in such studies, but few applications in this domain has been developed.

An important source of data in marine sciences is the echo sounder which is used to observe the marine ecosystem at a larger scale. Some preliminary approaches using convolutional neural networks for fish detection and classification from acoustic data are emerging but very little research has been done in this area.

Main objective

The innovations in the field of marine sciences aim developing  efficient and reliable deep learning methods for automatic analysis of complex marine observation data.


Many of the challenges related to the use of deep learning in this area are related to training data, where the amount of annotations can be limited and the quality variable and it is too expensive to get more and/or better data. There is also a need for explainability and reliability, as trust becomes very important when the output from these systems are intended as input to models for abundance estimation which again is a basis for setting of fishing quotas.

Visual Intelligence is advancing deep learning in the marine sciences to overcome these challenges.

Highlighted publications

New Visual Intelligence paper accepted to NeurIPS
September 23, 2022
ProtoVAE explainability paper by Srishti Gautam and co-authors is published to NeurIPS 2022.
Multi-modal land cover mapping of remote sensing images using pyramid attention and gated fusion networks
August 1, 2022
We present a novel pyramid attention and gated fusion method (MultiModNet) for multi-modality land cover mapping in remote sensing.
Using Machine Learning to Quantify Tumor Infiltrating Lymphocytes in Whole Slide Images
June 21, 2022
Developing artificial intelligence methods to help pathologists in analysis of whole slide images for cancer treatment and detection.