Observed SIC for certain regions can vary substantially from one year to another. (a) SIC observed for September 2007, when the extent of the sea ice was lower than usual. (b) SIC observed for September 2013, when the extent of the sea ice was greater than usual. (c) Area where the observed SIC differed the most between September 2007 and September 2013 is highlighted (white), used as the ROI for gradient attribution.
Image:
Harald L. Joakimsen (UiT)

Observed SIC for certain regions can vary substantially from one year to another. (a) SIC observed for September 2007, when the extent of the sea ice was lower than usual. (b) SIC observed for September 2013, when the extent of the sea ice was greater than usual. (c) Area where the observed SIC differed the most between September 2007 and September 2013 is highlighted (white), used as the ROI for gradient attribution.

Collaborative paper with The Alan Turing Institute and the British Antarctic Survey accepted in IEEE Geoscience and Remote Sensing Letters

We are thrilled to announce that the paper "Interrogating Sea Ice Predictability With Gradients", a collaborative paper between Visual Intelligence, The Alan Turing Institute and the British Antarctic Survey, has been accepted in IEEE Geoscience and Remote Sensing Letters.

Collaborative paper with The Alan Turing Institute and the British Antarctic Survey accepted in IEEE Geoscience and Remote Sensing Letters

We are thrilled to announce that the paper "Interrogating Sea Ice Predictability With Gradients", a collaborative paper between Visual Intelligence, The Alan Turing Institute (AT) and the British Antarctic Survey (BAS), was accepted in the journal IEEE Geoscience and Remote Sensing Letters on February 14th 2024.

The paper focuses on interrogating the effect of the IceNet's, a state-of-the-art ice prediction model, input feature with a gradient-based analysis, which takes advantage of the developments within the deep learning literature to open the so-called "black box".

The authors' analysis focuses on the unusually large sea ice extent event in September 2013 and indicates that IceNet places a strong emphasis on previous observations of SIC, linear trends, and seasonal components when making predictions. They further identify which input features are most influential for the prediction and also which spatial location these measurements are particularly influential.

The authors of this particular work from the Visual Intelligence side are post doc. Luigi Luppino (UiT), PhD students Harald Lykke Joakimsen and Iver Martinsen (UiT), and Robert Jenssen (UiT). From the UK side, the authors are Scott Hosking (BAS/AT) and Andrew McDonald (BAS).

You may read the paper via IEEE Explore.

Abstract

Predicting sea ice concentration (SIC) is an important task in climate analysis. The recently proposed deep learning system IceNet is the state-of-the-art sea ice prediction model. IceNet takes high-dimensional climate simulations and observational data as input features and forecasts SIC for the next 6 months over a spatial grid over the northern hemisphere. The model has proven to be particularly good at predicting extreme sea ice events compared with previous dynamical models, but lacks interpretability. In the original IceNet paper, a permute-and-predict approach was taken for assessing feature importance. However, this approach is not capable of revealing whether a feature contributes positively or negatively to the final prediction, nor can it reveal the importance of features over the spatial grid of predictions. In this letter, we take steps to instead interrogate the effect of the IceNet input feature with a gradient-based analysis, taking advantage of developments within the deep learning literature to open the so-called black box. Our analysis focuses on the unusually large sea ice extent event in September 2013 and indicates that IceNet places a strong emphasis on previous observations of SIC, linear trends, and seasonal components when making predictions. In our analysis, we identify which input features are most influential for the prediction and also which spatial location these measurements are particularly influential.

Latest news

Three Visual Intelligence-authored papers accepted for leading AI conference on medical imaging

June 24, 2025

Visual Intelligence will be well represented at MICCAI 2025—one of the leading AI conferences on medical imaging and computer assisted intervention—with three recently accepted research papers.

2025 Norwegian AI Society Symposium: An insightful and collaborative event

June 23, 2025

More than 50 attendees from the Norwegian AI research community gathered in Tromsø, Norway for two days of insightful presentations, interactive technical sessions, and scientific and social interactions.

Minister of Research and Higher Education visits Visual Intelligence hub at Norwegian Computing Center

June 16, 2025

Last week, we wished Aasland—accompanied by Political Advisor Munir Jaber and Senior Adviser Finn-Hugo Markussen—welcome to the Norwegian Computing Center (NR). One of the visit's goals was to showcase ongoing Visual Intelligence projects at NR.

Visual Intelligence represented at EAGE Annual 2025

June 15, 2025

Alba Ordoñez and Anders U. Waldeland presented ongoing work on seismic foundation models and an interactive seismic interpretation engine at EAGE Annual 2025 in Toulouse, France.

Visual Intelligence PhD Fellow Eirik Østmo featured on Abels tårn

June 13, 2025

Østmo was invited to Abels tårn—one of the largest popular science radio shows in Norway—to answer listener-submitted questions related to artificial Intelligence (AI). The live show took place at Blårock Cafe in Tromsø, Norway on June 12th.

New Industrial PhD project with Kongsberg Satellite Services

June 12, 2025

VI industry partner Kongsberg Satellite Services (KSAT) received an Industrial PhD grant from the Research Council of Norway. The project will be closely connected to Visual Intelligence's "Earth observation" innovation area.

Visual Intelligence represented at plankton-themed workshop by The Institute of Marine Research

June 11, 2025

Visual Intelligence Researchers Amund Vedal and Arnt Børre Salberg recently presented ongoing Visual Intelligence research at a plankton-themed workshop organized by the Institute of Marine Research (IMR), Norway

My Research Stay at Visual Intelligence: Teresa Dorszewski

June 5, 2025

Teresa Dorszewski is a PhD Candidate at the Section for Cognitive Systems at the Technical University of Denmark. She visited Visual Intelligence in Tromsø from January to April 2025.

Visual Intelligence represented at the NORA Annual Conference 2025

June 3, 2025

Centre Director Robert Jenssen was invited to give a keynote and participate in a panel discussion on AI as critical national infrastructure at the NORA Annual Conference 2025 in Halden, Norway.

NRK.no: Nekter å svare om umerkede puslespill er KI-generert: – De bør være ærlige

June 2, 2025

Både forskere og statsråd mener kunstig intelligens bør tydelig merkes. Men forlaget som lager puslespillet som ekspertene mener er KI-generert, sier de ikke har noe med hvordan illustratører lager produktene sine (Norwegian news article by NRK)

ScienceNorway: This is how AI can contribute to faster treatment of lung cancer

May 30, 2025

Researchers have developed an artificial intelligence to map specific immune cells in lung cancer tumors. It can lead to less costly examinations and more personalised cancer treatment (English news story on sciencenorway.no).

Now Hiring: 4 PhD Fellows in Deep Learning

May 28, 2025

The Department of Physics and Technology at UiT The Arctic University of Norway is pleased to announce 4 exciting PhD Fellowships within machine learning at SFI Visual Intelligence. Application deadline: June 17th.

VG: Slik kan AI revolusjonere lungekreftbehandling

May 19, 2025

Norsk forskning har utviklet kunstig intelligens som raskt kan analysere lungekreft. Ekspertene forklarer hvordan dette kan bidra til en mer effektiv og persontilpasset behandling (Norwegian news article in vg.no)

Visual Intelligence evaluated by international experts: "The centre operates at an excellent level"

April 29, 2025

After four years of operation, an international AI expert panel was appointed to assess Visual Intelligence's progress and results. The evaluation was characterized by its excellent remarks on the centre's scientific quality and innovation output.

Visual Intelligence at Norsk Radiografforbund's mammography symposium

April 24, 2025

Senior Researcher Fredrik Dahl recently gave a talk about Norsk Regnesentral's work on developing AI algorithms for automatic analysis of image quality and cancer detection at Norsk Radiografforbund's mammography symposium in Oslo.