Jørgen Agersborg defending his PhD thesis.
Image:
Petter Bjørklund / SFI Visual Intelligence

Jørgen Agersborg defending his PhD thesis.

Successful PhD defense by Jørgen Agersborg

Congratulations to Jørgen Agersborg, who successfully defended his PhD thesis at UiT The Arctic University of Norway on November 28th.

Successful PhD defense by Jørgen Agersborg

Congratulations to Jørgen Agersborg, who successfully defended his PhD thesis at UiT The Arctic University of Norway on November 28th.

By Petter Bjørklund, Communications Officer at SFI Visual Intelligence

Agersborg is a Doctoral Research Fellow at Visual Intelligence and UiT Machine Learning Group.

His thesis, titled "Methodological advancement of optical and radar remote sensing for Arctic forest-tundra ecotone vegetation analysis", presents novel machine learning methdologies for monitoring the Arctic forest-tundra ecotone. Agersborg's PhD project is part of the "Methodological advancement of Climate-Ecological Observatory for Arctic Tundra (COAT Tools)" project.

Agersborg's trial lecture was titled "Earth Observation foundational models and the embedding layers that result".

Summary of the thesis

Ecosystems in the high north are vulnerable to both the direct and indirect impacts of climate change. Rising temperatures, tall shrub encroachment and advancing treelines, increasing frequency of canopy defoliation events, and more extreme weather will all influence the Arctic forest-tundra ecotone, the transitional zone between Subarctic forest and Low Arctic tundra. Efficient large-scale monitoring of these areas requires extracting information from satellite remote sensing (RS) products using machine learning (ML) methodologies. The overarching goal of this thesis has been to develop such techniques for monitoring the Arctic forest-tundra ecotone as part of the "Methodological advancement of Climate-Ecological Observatory for Arctic Tundra" (COAT Tools) project. Several challenges need to be overcome to provide efficient ML tools applicable for satellite RS-based monitoring of this region. The frequent cloud cover limits the opportunities for imaging by multispectral optical sensors. Observations from largely weather independent synthetic aperture radar (SAR) satellites can mitigate this, especially if the full information potential of the sensor is utilised and integrated with multispectral data. The sparse and scattered distribution of vegetation classes critical for understanding this region also poses a challenge. This is aggravated by a general lack of ground reference data suitable for training ML models on satellite imagery with sufficient resolution to capture this variability. This thesis presents methodological advancements that address these challenges. A resolution-preserving method for estimating the polarimetric SAR covariance matrices using an optical guide image is demonstrated to help differentiate live from defoliated forest canopy. Further, this method is used to generate the post-event image for a semi-supervised targeted change detection mapping of forest mortality. By applying image-to-image translation, the change detection is performed against a multispectral optical image captured before the outbreak of the defoliating pest insect that caused the disturbance. A targeted semi-supervised approach is also developed to map forest and tall shrub cover. The method exploits the similar appearance of forest and tall shrub in RS imagery to first differentiate them from all other land cover types, before a second ML model is trained to distinguish between them. The map is then created from a dataset where stacks of freely available SAR and multispectral images have been combined and utilised to perform multitemporal filtering. The results in this thesis demonstrate that these methodological advancements can contribute to accurate and reliable large-scale monitoring of the Arctic forest-tundra ecotone based on SAR and multispectral optical satellite remote sensing.

Supervisors

  • Professor Michael Kampffmeyer, Department of Physics and Technology, UiT (Main Supervisor)
  • Associate Professor Stian N. Anfinsen, Norwegian Research Centre, NORCE
  • Senior Researcher Jane Uhd Jepsen, Norwegian Institute for Nature Research, NINA

Evaluation committee

  • Professor Iain H. Woodhouse, University of Edinburgh, United Kingdom (1st opponent)
  • Senior Researcher Emma Izquierdo-Verdiguier, University of Natural Resources and Life Sciences in Vienna, Austria (2nd opponent)
  • Professor Anthony Doulgeris, Department of Physics and Technology, Faculty of Science and Technology, UiT (internal member and committee leader)
Agersborg with the defense leader, supervisors, and evalutation committee. Photo: Petter Bjørklund / SFI Visual Intelligence.

Latest news

State Secretary Marianne Wilhelmsen visits SFI Visual Intelligence and UiT

November 26, 2025

State Secretary Marianne Wilhelmsen visited UiT The Arctic University of Norway to learn more about SFI Visual Intelligence and UiT's AI initiatives in education and research.

TV2.no: Sier Elon Musk er smartere enn Leonardo da Vinci

November 25, 2025

KI-chatboten Grok har fortalt brukere at verdens rikeste mann er både smartere og sprekere enn noen andre i verden – inkludert basketballstjernen LeBron James og Leonardo da Vinci (Norwegian news article on tv2.no)

Successful science communication workshop at Skibotn

November 21, 2025

The Visual Intelligence Graduate School gathered our early career researchers for a 3-Day Science Communication workshop at Skibotn field station outside of Tromsø, Norway.

uit.no: UiT og Aker Nscale sammen om storsatsing på kunstig intelligens

November 19, 2025

Onsdag inngikk Aker Nscale og UiT Norges arktiske universitet en ti-årig samarbeidsavtale for å utvikle og styrke kompetansemiljøene for kunstig intelligens i Narvik og Nord-Norge. Aker Nscale garanterer for 100 millioner kroner i avtaleperioden (news story on uit.no)

Two fruitful days at The Alan Turing Institute's headquarters

November 17, 2025

Centre Director Robert Jenssen and PhD Candidate Lars Uebbing had two fruitful days together with researchers at The Alan Turing Institute's headquarters in London

Anders Waldeland nominated for the Digital Trailblazer 2025 Award

November 12, 2025

Senior Research Scientist Anders Waldeland is nominated for the Digital Trailblazer 2025 Award. The winner is announced at the Dig X Subsurface conference in Oslo, Norway in December.

AI can help detect heart diseases more quickly

November 7, 2025

Visual Intelligence researchers have developed an AI to automatically measure the heart's structure – both quickly and accurately. They believe it can help doctors detect and treat cardiovascular diseases faster.

How can PET and AI help detect prostate cancer earlier?

November 5, 2025

Samuel Kuttner and Elin Kile presented research on PET and artificial intelligence at evening seminar on early detection of prostate cancer organized by the Norwegian Prostate Cancer Assocation.

Visual Intelligence represented at Svarte Natta 2025

October 29, 2025

Centre Director Robert Jenssen represented Visual Intelligence at Svarte Natta 2025 – North Norway's journalist and media conference organized by the Norwegian Union of Journalists.

My Research Stay at Visual Intelligence: Aitor Sánchez

October 5, 2025

Aitor Sánchez is a PhD candidate at the Intelligent Systems Group of the University of the Basque Country in Spain. He visited Visual Intelligence in Tromsø from March to June 2025.

Visual Intelligence at Forskningsdagene 2025

September 28, 2025

Visual Intelligence researchers participated in this year's Forskningsdagene: an annual national research festival which aims to stimulate the general public's interest and curiosity in research.

forskning.no: Derfor trenger vi en lov for kunstig intelligens

September 26, 2025

Norge arbeider med å få på plass en egen lov for kunstig intelligens. Loven skal passe på at vi bruker KI på en trygg måte (Norwegian news article at uit.no).

Visual Intelligence Days 2025: Two packed days of scientific and social interactions!

September 25, 2025

85 researchers from the Visual Intelligence consortium convened for the Visual Intelligence Days: the annual workshop where researchers, user partners and invited guests convene to share knowledge and updates on the latest research and innovations within the centre.