Scientific publications

At Visual Intelligence we work across our innovation areas to extract knowledge from large volumes of visual data more efficiently through automatic and intelligent data analysis. The work to address the core research challenges in deep learning: working with limited training data, utilizing context and dependencies, providing explainability, confidence and uncertainty, are important in all the innovation areas.

Featured blog posts

AI matches human experts in classifying microscopic organisms

July 16, 2025
By
Iver Martinsen, Steffen Aagaard Sørensen, Samuel Ortega, Fred Godtliebsen, Miguel Tejedor, Eirik Myrvoll-Nilsen

Visual Data Diagnosis and Debiasing with Concept Graphs

September 26, 2024
By
Chakraborty, Rwiddhi; Wang, Yinong; Gao, Jialu; Zheng, Runkai; Zhang, Cheng; De la Torre, Fernando

All publications

Deep Image Translation With an Affinity-Based Change Prior for Unsupervised Multimodal Change Detection

By authors:

Luppino, Luigi Tommaso; Kampffmeyer, Michael; Bianchi, Filippo Maria; Moser, Gabriele; Serpico, Sebastiano Bruno; Jenssen, Robert; Anfinsen, Stian Normann

Published in:

IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-22, 2022

on

February 17, 2021

Cerebral blood flow measurements with 15O-water PET using a non-invasive machine-learning-derived arterial input function

By authors:

Kuttner, Samuel; Wickstrøm, Kristoffer Knutsen; Lubberink, Mark; Tolf, Andreas; Burman, Joachim; Sundset, Rune; Jenssen, Robert; Appel, Lieuwe; Axelsson, Jan

Published in:

Journal of Cerebral Blood Flow and Metabolism 2021 s. 1-13

on

February 8, 2021

Measuring Dependence with Matrix‐Based Entropy Functional

By authors:

Shujian Yu, Francesco Alesiani, Xi Yu, Robert Jenssen, Jose Principe

Published in:

AAAI 2021

on

January 25, 2021

Curve-Based Classification Approach for Hyperspectral Dermatologic Data Processing

By authors:

Uteng, Stig; Quevedo, Eduardo; Callico, Gustavo M.; Castaño, Irene; Carretero, Gregorio; Almeida, Pablo; Garcia, Aday; Hernandez, Javier A.; Godtliebsen, Fred.

Published in:

Sensors

on

January 20, 2021

Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps

By authors:

Kristoffer Wickstrøm, Michael Kampffmeyer, Robert Jenssen

Published in:

Medical Image Analysis, Volume 60, February 2020, 101619

on

November 14, 2019

Pathloss prediction using deep learning with applications to cellular optimization and efficient D2D link scheduling

By authors:

Ron Levie, Çağkan Yapar, Gitta Kutyniok, Giuseppe Caire

Published in:

ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

on

May 4, 0202

Other publications

annual reports